

SANT'ORSOLA

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI SCIENZE MEDICHE E CHIRURGICHE

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologn

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton May 8-9, 2023

Cutaneous T-cell Lymphoma Maarten Vermeer Leiden University Medical Center

President: Pier Luigi Zinzani

Disclosures

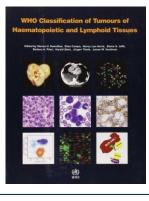
Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Kyowa	x					Х	
Takeda	x						
Recordati	x						
Innate						Х	
Galderma						Х	

Aggressive Cutaneous T-cell Lymphoma

Aggressive Lymphoma Workshop Bologna 9th of May

Maarten Vermeer Dermatology


2022 WHO classification (revised 5th ed.)

Cutaneous T-cell lymphomas

- Mycosis fungoides & variants of MF
 - Folliculotropic MF
 - Granulomatous slack skin
 - Pagetoid reticulosis
- Sezary syndrome
- Spectrum cutaneous CD30+ LPD
- Subcutaneous panniculitis-like T-cell lymphoma
- Extranodal NK/T-cell lymphoma
- Hydroa vacciniforme-like LPD (CAEBVI)
- Primary cutaneous peripheral T-cell lymphoma, NOS + rare subtypes
 - Primary cutaneous γ/δ T-cell lymphoma
 - Aggressive cytotoxic epidermotropic CD8+ CTCL
 - Primary cutaneous CD4+ small/medium T-cell LPD
 - Primary cutaneous acral CD8+ T-cell lymphoma

Cutaneous B-cell lymphomas

- Primary cutaneous marginal zone lymphoma
- Primary cutaneous follicle center lymphoma
- Primary cutaneous DLBCL, leg type
- EBV-positive mucocutaneous ulcer
- Intravascular large B-cell lymphoma

1. Skin homing memory CD4+ T-cells

- Mycosis Fungoides
- Sezary syndrome

2. EBV driving T-cell/NKT-cell lymphoma

- NK/T-cell lymphoma
- Hydroa vacciniforme-like LPD

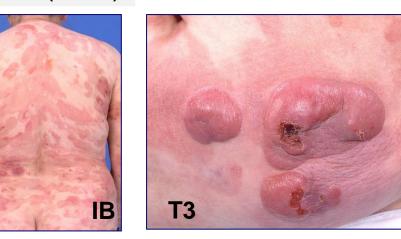
3. Specific skin associated T-cell subsets

- Primary cutaneous γ/δ T-cell lymphoma
- Aggressive cytotoxic epidermotropic CD8+ CTCL

Mycosis Fungoides

- Most common type of CTCL (ca. 50%).
- Presents later in life, 6th decade
- Indolent course (years to decades) with slow progression from patches to plaques to tumors.
- Development of nodal or visceral disease in a minority of patients.

• At present no prognostic biomarkers available



Mycosis Fungoides

Patches and plaques <10% of skin (T1 or IA)

Patches and plaques >10% of skin (T2 or IB)

Tumors (T3 or IIB)

Progression to systemic disease <5%

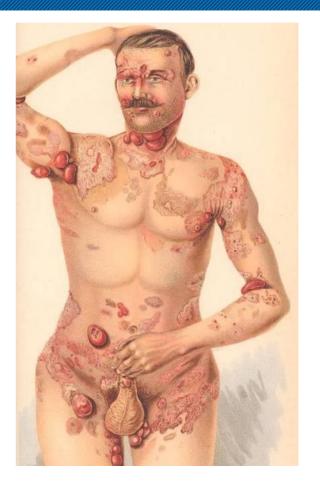
IA

10-year survival 97%

T1

Progression to systemic disease 15%

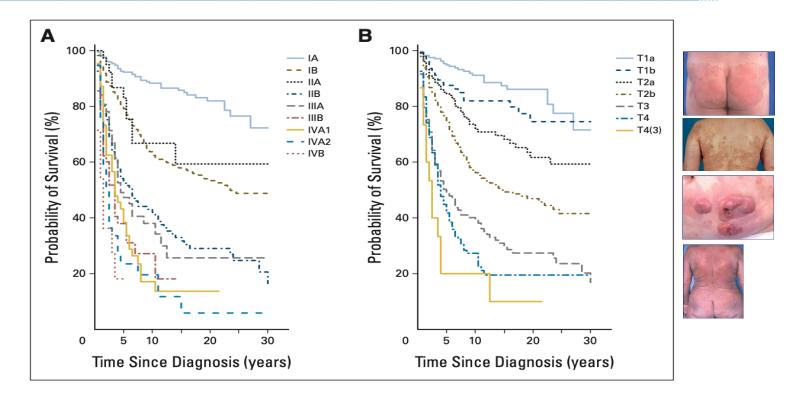
T2


10-year survival 83%

Progression to systemic disease 40%

IIB

10-year survival 42%


Kaposi Handatlas der Hautkrankheiten 1899

Actuarial disease-specific survival

Agar et al; J Clin Oncol, 2010; vDoorn Arch Dermatol 2001; Kim Arch Dermatol 2003

9

MF IIb Tumors Radiotherapy

- Involved field :
- Involved field relapse:

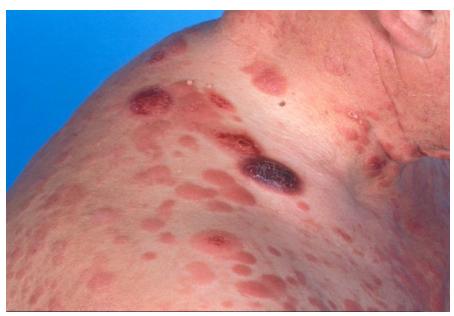
8 Gy (2x4 Gy) 20 Gy (8x2,5 Gy)

• Total Skin Electron Beam: 12 - 35 Gy (20x1,75 Gy)

Cumulative dose of 60-80Gy is upper limit in skin because of cummulative radiotoxicity.

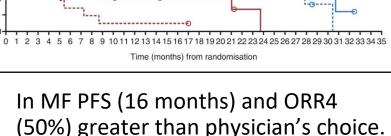
MF, stage IIB

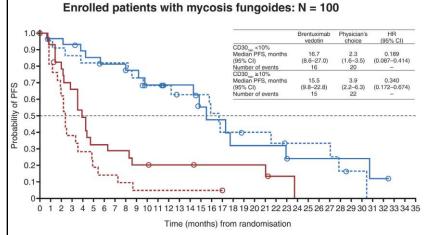
Therapy: Low dose radiotherapy (2 x 4 Gy)


MF tumors, stage IIB

Therapy: Low dose radiotherapy (2 x 4 Gy)

MF, stage IIB




Therapy: total skin electron beam irradiation

Brentuximab in MF and SS

Cutaneous T-cell lymphoma:

- Response in 85% of cutaneous ALCL and LyP patients
- Later also MF and SS
- Limitations:
 - Side effects: peripheral neuropathy
 - Number of CD30+ tumor cells needed for effective therapy is not known.
 - Variation in CD30 expression \rightarrow multipel samples!

MF treatment ≥ stage IIB

- Around 15% of patients develop overt nodal or visceral disease
- Traditionally treated with CHOP but increasing reluctance to use because of short term effect and immunosuppression.

New therapeutic developments:

- Monochemotherapy
- Therapeutic antibodies
- New aSCT protocols.

MF treatment ≥ stage IIB (extracutaneous disease)

- CHOP or CHOP-like chemotherapy
- Mono chemotherapy
 - Liposomal doxorubicin
 - Gemcitabin
 - Praletrexate
 - Pentostatin

Antibodies

- Mogamulizumab (anti-CCR4)
- Brentuximab (anti-CD30)
- Alemtuzumab (anti-CD52)
- Stem cell transplantation (SCT)
 - Allogeneic SCT

HDACi

• Vorinostat, Resminostat

Novel treatment approaches

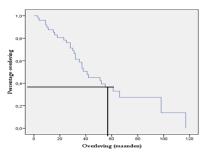
- JAK/STAT inhibitor (Cerdulatinib)
- Anti miR155 (Cobomarsen)
- Anti CS158k (IPH4102)
- Checkpoint inhibitors:
 - PD1 (Pembrolizumab, Nivolumab)
 - PD-L1 (durvalumab, atezolizumab)

Optimal place and combinations are still to be defined.

Sézary Syndrome (SS)

Rare and aggressive cutaneous T cell lymphoma (CTCL)

- CD4+, skin-homing, memory T cells


Clinical presentation:

- Erythroderma, pruritus
- Alopecia, onychodystrophy
- Palmoplantar hyperkeratosis
- Lymphadenopathy
- Sézary cells in skin, lymph nodes and blood

5-year survival around 30%

Sézary cell (Chu and Morris 1989)

DD Erythroderma, a long list....

Tabel 1 Oorzaken van Erythrodermie	Graft versus host ziekte			
Dermatitis	Paraneoplastische erythrodermie			
Atopische Dermatitis	Mastocytosis			
 Allergische/irritant contact Dermatitis Seborrhoische Dermatitis 	Hypereosinofiel syndroom			
Actinisch reticuloid	Infecties/infestaties			
Immunobulleuze ziekten	 Scabies Staphylococcus scalded skin syndroom Dermatophyte infectie 			
Bulleus pemfigoid				
Pemphigus vulgaris				
• Pemphigus foliaceus • Paraneoplastische pemphigus	• HIV			
Geneesmiddelenerupties	Autoimmuun bindweefsel ziekten			
Toxische epidermale necrolyse	Dermatomyositis			
• Drug reaction with eosinophilia and systemic symptoms and signs (DRESS)	• Lupus erythematodus			
Acute generalized exanthematous pustulosis (AGEP) Psoriasis	Primaire immuundeficienties			
Pityriasis rubra pilaris	 Severe combined immunodeficiencies waaronder ook Omenn syndroom Wiscott-Aldrich syndroom Congenitale ichthyosen Netherton's syndroom Bullouze congenitale ichthyosiforme enuthredermie 			
Lichen planus				
Cutane lymfomen				
Mycosis fungoides				
• Sezary syndroom	 Bulleuze congenitale ichthyosiforme erythrodermie Niet-bulleuze congenitale ichthyosiforme erythrodermie 			
 Adult T-cel Leukemia Lymfoom (ATLL) T-cel prolymphocytic leukemia (PTLL) 	X-gebonden dominante chondrodysplasia punctata			
	······································			

Diagnostic criteria Sezary syndrome

Clinic T-cel clonality

Abnormal T-cells based on:

- Morphology
- Immuunphenotyping
- Number of CD4+ T-cellen

- Erythroderma en lymphadenopathy
- Identical T-cel clone (based on TCRrearrangement) in blood and skin
- Sézary cells >1000 cellen/microL
- Los of CD7 en/of CD26
- CD4:CD8 ratio >10

Ongoing EORTC-CLWG study to improve detection and quantification of tumor cells by flow cytometry

Sezary Syndrome Genetics

NGS studies (mainly WES) High mutational burden

No recurrent translocations

Affected genes:

- DNA damage response
- TCR signaling
- JAK/STAT signaling
- Chromatin modifications

Review Article

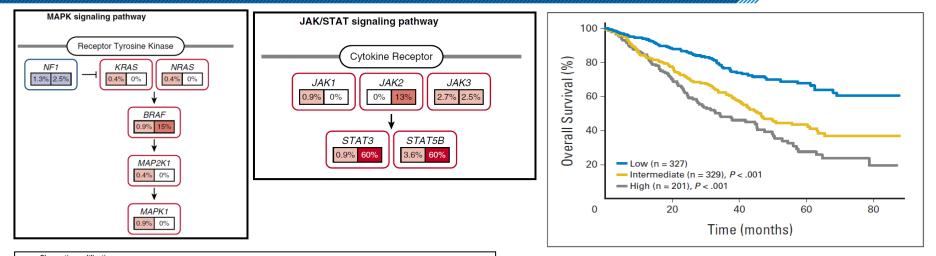
Genetic and epigenetic insights into cutaneous T-cell lymphoma

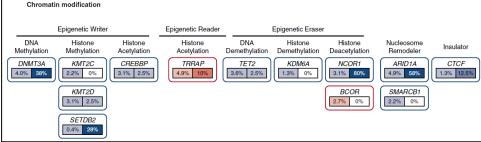
er, MD, PhD

Cornelis P. Tensen, Koen D. Quint, and Maarten H. Vermeer

Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E)

Joonhee Park,¹⁻³ Jingyi Yang,¹⁻³ Alexander T. Wenzel,¹⁻³ Akshaya Ramachandran,¹⁻³ Wung J. Lee,¹⁻³ Jay C. Daniels,¹⁻³ Juhyun Kim,¹⁻³ Estela Martinez-Escala,⁴ Nduka Amankulor,⁵ Barbara Pro,³ Joan Guitart,⁴ Marc L. Mendillo,²




Check for updates

Cutaneous T cell lymphoma

Reinhard Dummer^{1,2⊠}, Maarten H. Vermeer₁₀³, Julia J. Scarisbrick₁₀⁶, Youn H. Kim⁵, Connor Stonesifer⁶, Cornelis P. Tensen³, Larisa J. Geskin⁶, Pietro Quaglino⁷ and Egle Ramelyte^{1,2}

Correlate CLIC Survival data with NGS results

Treatment

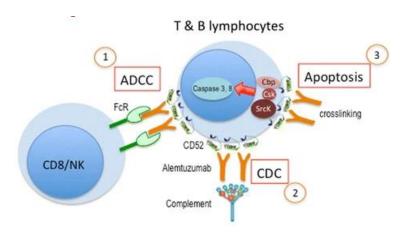
First line:

- Topical therapies: Emolliens, topical steroids, PUVA
- Prednisone 10-20 mg dd
- MTX 10-20 mg/week, Neotigason 20-30 mg dd, pegIFNα
- Extracorporeal photopheresis

Second line

- Mogamulizumab (anti-CCR4)
- Alemtuzumab (anti-CD52)
- Brentuximab (anti-CD30)

Allogeneic Stem Cell Transplantation + Donor Lymphocyte Infusions


Alemtuzumab (anti-CD52)

CD52 expression

• T and B cells, monocytes and dendritic cells.

Cutaneous T-cell lymphoma:

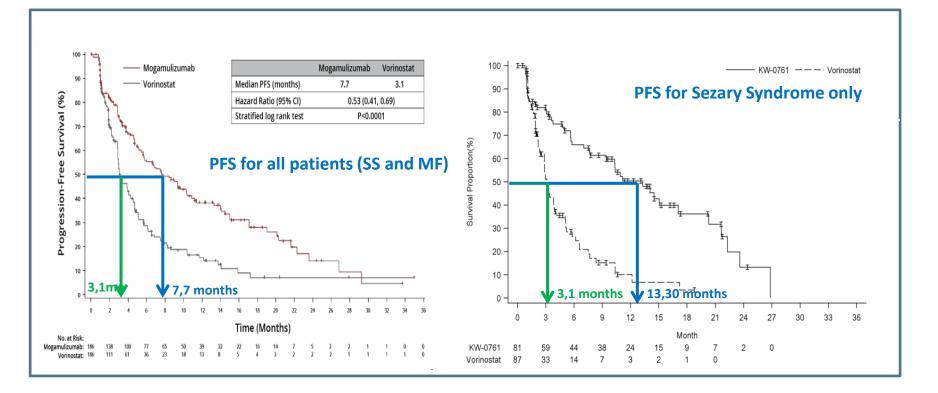
- Response in 85% of CTCL patiënts, in particular effective in SS
- Side effects: infections (CMV, aspergillosis)
- Disease free interval 6-12 months.
- With 10 mg 1x/wk less infectious complications

Lundin *et al* Blood 2003, Querfeld C, *et al* Leuk Lymphoma. 2009, Bernengo MG, *et al*. Haematologica. 2007, Clark *et al* Sci Transl Med 2012, De Masson et al Br J Dermatol 2014

Mogamulizumab (anti-CDR4)

CCR4 expression

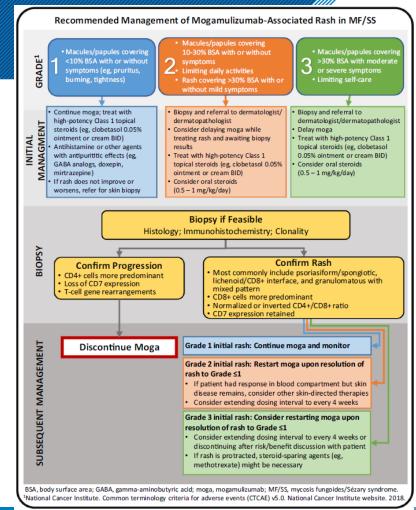
- Type II helper T cells, regulatory T cells (FoxP3+), skin homing T-cells6
- ATL, PTCL, en CTCL^{4,7}


Cutaneous T-cell lymphoma:

- Response in 85% of CTCL patiënts (MF and SS)
- In particular effective in SS, blood compartment
- Side effects: moga rash
- Progression free survival 13 months (SS).

Lundin *et al* Blood 2003, Querfeld C, *et al* Leuk Lymphoma. 2009, Bernengo MG, *et al*. Haematologica. 2007, Clark *et al* Sci Transl Med 2012, De Masson et al Br J Dermatol 2014

MAVORIC: Progression Free Survival as primary endpoint



Mogamulizumab side effects

Dermatologic Events Associated with the Anti-CCR4 Antibody Mogamulizumab: Characterization and Management

Amy C. M. Musiek · Kerri E. Rieger · Martine Bagot · Jennifer N. Choi · David C. Fisher · Joan Guitart · Paul L. Haun · Steven M. Horwitz · Auris Onn-Lay Huen · Bernice Y. Kwong · Mario E. Lacouture · Sarah J. Noor · Alain H. Rook · Lucia Seminario-Vidal · Maarten H. Vermeer · Youn H. Kim

- "Moga-rash" is described in 12% patients.
- Treatment with topical steroids.
- Rash is associated with better prognosis
- Biopsy in grade 2 and 3 reactions to exclude localization of disease.

Resistance to Mogamulizumab or Alemtuzumab

Resistance to Mogamulizumab

Mutations or copy number loss of CCR4 leading to loss of CCR4 expression

Resistance to Alemtuzumab

• Epigenetic silencing of PIG gene leading to loss of anchor protein and loss of CD52 expression

Illustrating ongoing evolution of tumor cells

Beygi Blood 2022; Halkes J Invest Dermatol 2008

Allogeneic Stem Cell Transplantation

Nonmyeloablative allogeneic SCT

New conditioning regimes: 2-, 5-, and 7-year survival of 68%, 56% and 32%.

Complicated by mortality, infections, and GVHD (30%)

Cancers

Review

Allogeneic Hematopoietic Stem Cell Transplantation in Cutaneous T-Cell Lymphomas

Maëlle Dumont ^{1,2,3}, Régis Peffault de Latour ^{3,4}, Caroline Ram-Wolff ¹, Martine Bagot ^{1,2,3,*} and Adèle de Masson ^{1,2,3}

REGULAR ARTICLE

S blood advances

Nonmyeloablative allogeneic transplantation achieves clinical and molecular remission in cutaneous T-cell lymphoma

Wen-Kai Weng,^{1,2} Sally Arai,¹ Andrew Rezvani,¹ Laura Johnston,¹ Robert Lowsky,¹ David Miklos,¹ Judith Shizuru,¹ Lori Muffly,¹ Everett Meyer,¹ Robert S. Negrin,¹ Erica Wang,² Timothy Almazan,² Lynn Million,³ Michael Khodadoust,^{2,4} Shufeng Li,² Richard T. Hoppe,³ and Youn H. Kim^{2,4}

Selected cases

aSCT Prospective trial de Masson Lancet Oncol 2023

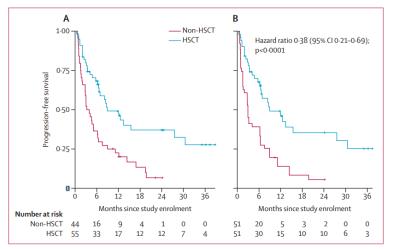


Figure 2: Progression-free survival after study enrolment in the intention-to-treat analysis, according to study group

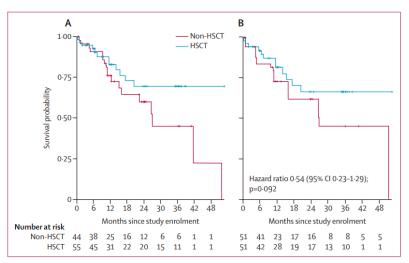
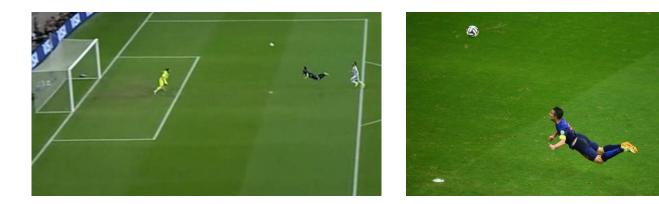
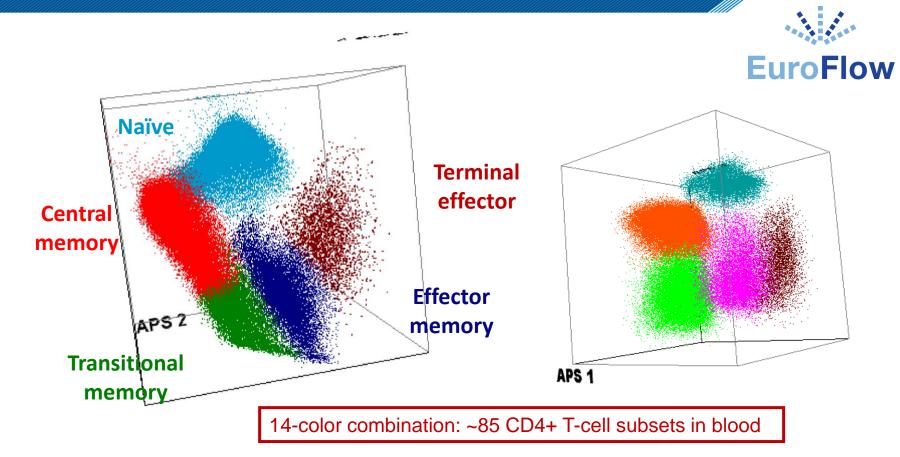
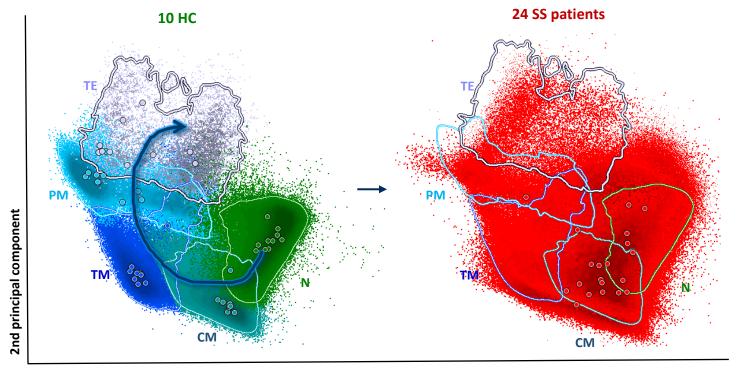



Figure 3: Overall survival after study enrolment in the intention-to-treat analysis, according to study group


	НЅСТ	Non-HSCT	
Progression Free Survival	9 months (6.6 – 30.5)	3 months (2.0 - 6.3)	
Median Overall Survival	Not reached	26.9 months (16.1- not reached)	

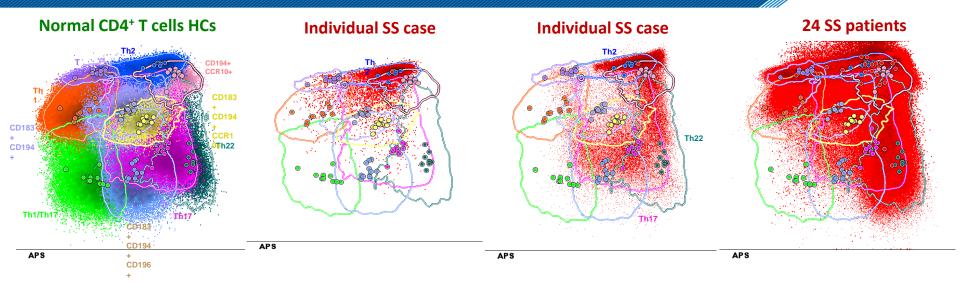
Remaining questions

- Optimal conditioning regime?
- Optimal patient selection?
- Optimal timing of aSCT in disease course?



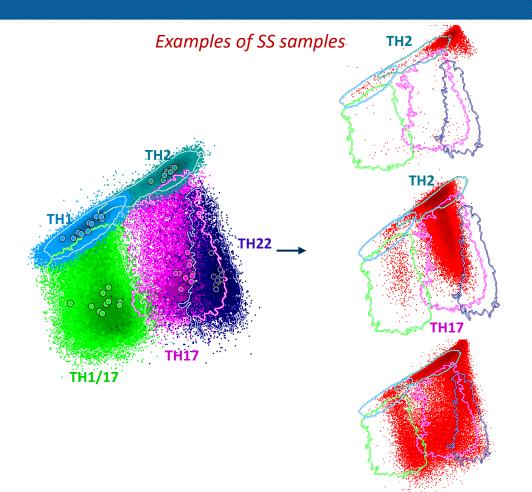
CD4+ T-cell Maturation Pathway in Healthy Adults

Sézary cells show different maturation profiles


Naïve (N) → Central Memory (CM) → Transitional Memory (TM) → Peripheral memory (PM) → Terminal effector (TE)

1st principal component

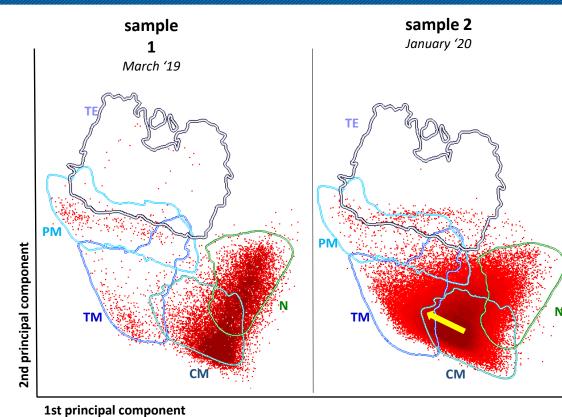
Najidh Blood 2022


Sézary cells; not always the typical Th2-phenotype

- Sézary cells exhibit a wide range of classical and non-classical T helper subsets
 Inter-patient heterogeneity
- Sézary cells from same patient show distinct T helper subsets
 Intra-patient heterogeneity

Najidh Blood 2022

EuroFlow-Sézary Study – Results


Predominantly one subset (3/20; 15%)

Predominantly two subsets (8/20; 40%)

SCs at least three subsets (9/20; 45%)

Sézary Syndrome: Phenotypic Shift During Follow-up

• Tumour population $30\% \rightarrow 90\%$

- All tumour cells remain mainly TH2
- Clinical deterioration

bai component

Najidh Blood 2022

Conclusions EuroFlow-Sézary pilot study

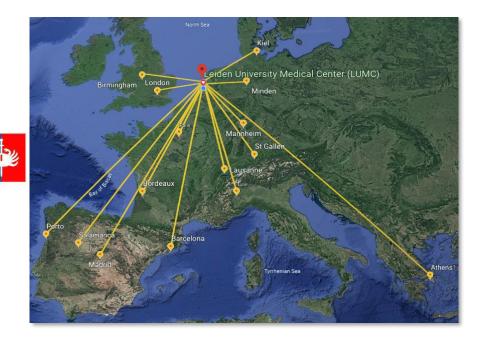
Sézary syndrome patients are highly heterogeneous

- Inter-patient heterogeneity
- Intra-patient heterogeneity
- Phenotypic shifts

Questions:

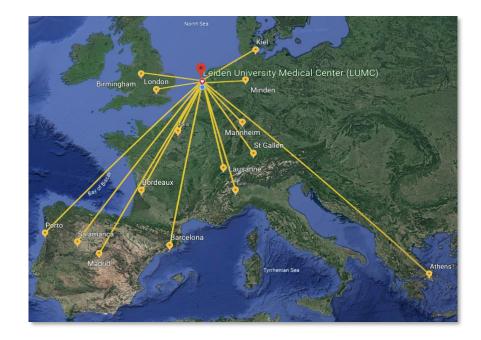
- Are different tumor cell subpopulations functionally different?
- Do different subpopulations correlate with disease course and prognosis?

- Does blood involvement correlate with disease course?
- Can we detect circulating tumour cells in early stages of MF?


Initiation of European multicenter study

Start European multicenter collaboration between 17 EORTC-Cutaneous Lymphoma Working Groups and EuroFlow centers

Athens – Barcelona – Berlin – Birmingham – Bordeaux – Kiel – Lausanne – Leiden – London - Madrid – Mannheim – Minden – Paris – Porto – Salamanca – St. Gallen - Turin



Initiation of European multicenter study

Start European multicenter collaboration between 17 EORTC-Cutaneous Lymphoma Working Groups and EuroFlow centers

Athens – Barcelona – Berlin – Birmingham – Bordeaux – Kiel – Lausanne – Leiden – London - Madrid – Mannheim – Minden – Paris – Porto – Salamanca – St. Gallen - Turin

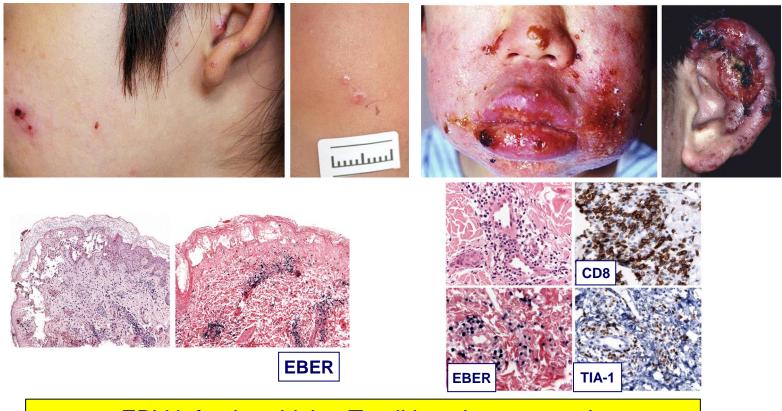
- ightarrow Building European collaborative network
- ightarrow Achieving high levels of FC standardization across centers
- → Testing and validation of CTCL-specific classical and novel markers in three 8-color FC panels

objectives

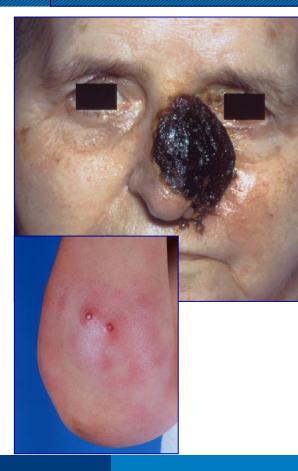
Hydroa-vacciniforme-like lymphoproliferative disorder

- Uncommon mainly seen in children and adolescents from Asia, South- and Central-America.
- Cutaneous manifestations of <u>chronic active EBV infection</u>
- Clonal TCR with EBV in clonal form:
 - CD8+ cytotoxic T-cells (CD8+, GrB+, TIA-1+ Perf+)
 - NK cells (CD56+, CD5-, TCRs-)
- Both condition may either run an indolent clinical course or progress to frank lymphoma.

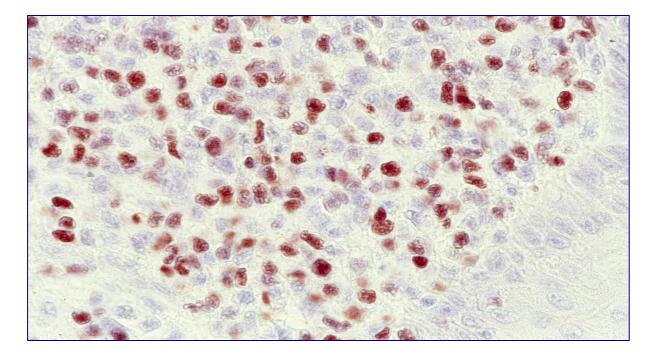
Clinical presentationand progression of disease


- Skin
 - Papulovesicular eruption on sun-exposed skin, blisters and ulceration

- Progression
 - Fever
 - Lymphadenopathy, hepatosplenomegaly,
 - Periorbital and lip edema



Hydroa-vacciniforme-like lymphoproliferative disorder


EBV infection driving T-cell lymphomagenesis

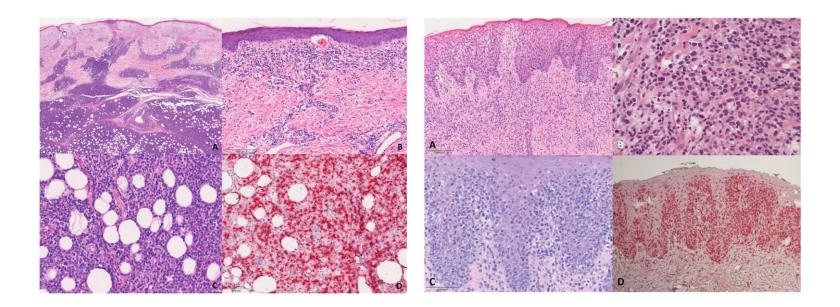
Extranodal NK/T-Cell lymphoma, nasal type (lethal midline granuloma)

- Rare; median age 35-58
- More common in Asia and central and south America, (HLA associated)
- Nasopharynx/nasal cavity 80%; less commonly at other sites
- EBV-associated (nearly 100%)
- Usually NK-cell phenotype; more rarely a cytotoxic T-cell phenotype
- L-asparaginase containing chemotherapy.
- SCT in selected cases.
- PD1 blocking has shown promising results

Extranodal NK/T-cell lymphoma, nasal type

EBER1/2

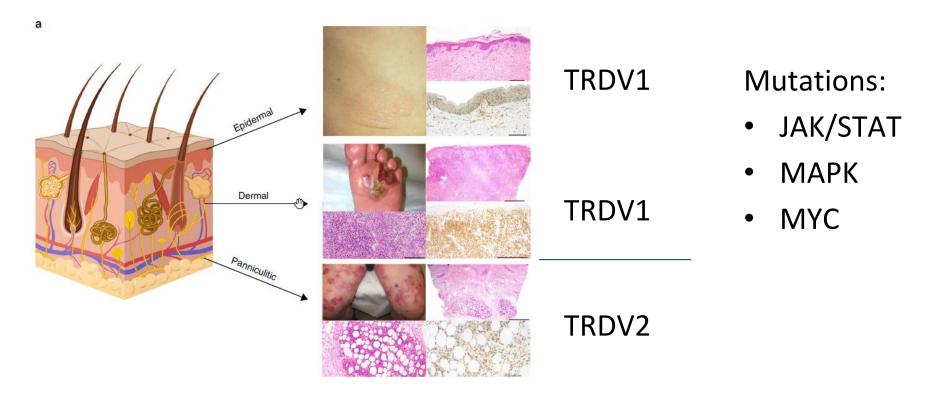
- Rare and aggressive CTCL derived from activated mature Yδ T-cells
- Infiltration of <u>activated mature Yδ T-cells</u> in epidermis-dermis-panniculus
- CD3+, CD2+, CD7+/-, CD5-, cytotoxic proteins, CD4-, CD8-/+ occ. CD56+ (50%)
- Variation in clinical presentation
- Variation in histology


Gamma Delta TCL Clinical Presentation

Plaques – Nodules - Tumors

Violetti Dermatopathology 2021

PC Gamma-Delta TCL: Histology



Dermal/Panniculus Infiltration

Epidermal Infiltration

Violetti Dermatopathology 2021

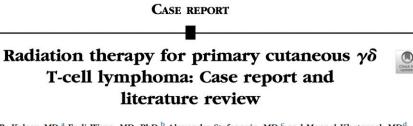
TCR Delta V1 or V2 correlates with skin compartment

Daniels Nature Comm 2020

Article Primary Cutaneous Gamma-Delta T Cell Lymphomas: A Case Series and Overview of the Literature

Silvia Alberti-Violetti ^{1,2,*}, Carlo Alberto Maronese ^{1,2}, Luigia Venegoni ², Valentina Merlo ¹ and Emilio Berti ^{1,2}

	Epidermal/Dermal	Subcutaneous
V 1 (n=4)	3	1
V 2 (n=7)	1	6


No correlation of V\delta1 V\delta2 subtype and prognosis

 Complicated by hemophagocytic syndrome and spread to mucosa and extranodal sites with sparing of lymphnodes and bone marrow.

- Poor prognosis with median survival <2 years and 5-year survival around 20%.
- Agressive therapy indicated: aSCT

• Indolent disease course in exceptional cases.

Indolent course of disease

Chris R. Kelsey, MD,^a Endi Wang, MD, PhD,^b Alexandra Stefanovic, MD,^c and Meenal Kheterpal, MD^d Durbam, North Carolina

Key words: cutaneous T-cell lymphoma; primary cutaneous $\gamma\delta$ T-cell lymphoma; radiation therapy.

Anatomic Pathology / Indolent Cutaneous y/& T-Cell Lymphoma

Indolent Primary Cutaneous γ/δ T-Cell Lymphoma Localized to the Subcutaneous Panniculus and Its Association With Atypical Lymphocytic Lobular Panniculitis

Cynthia M. Magro, MD, and Xuan Wang, MD, PhD

Key Words: Primary cutaneous y/& T-cell lymphoma; Subcutaneous panniculitis-like T-cell lymphoma; Indolent

DOI: 10.1309/AJCPQGVLTZQ77VFF

J Cutan Pathol 2013: 40: 896–902 doi: 10.1111/cup.12091 John Wiley & Sons. Printed in Singapore © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

Journal of Cutaneous Pathology

Indolent course of cutaneous gamma-delta T-cell lymphoma

Cutaneous gamma-delta T-cell lymphoma (y&TCL) is a rare malignancy that typically displays an aggressive clinical course. We present an unusual case of a 57-year-old woman with a 3-year history of lower extremity nodules. Histopathologic, immunophenotypic and molecular genetic studies revealed a clonal, predominantly pannicular

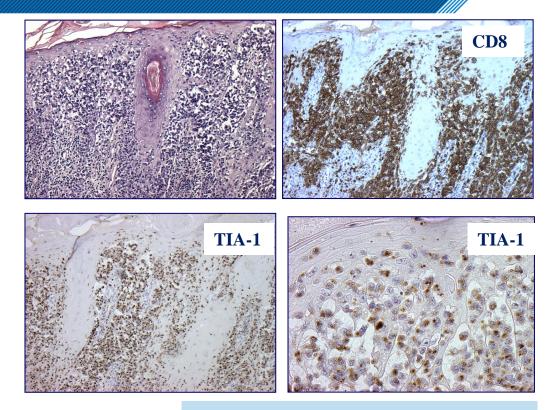
Dawnielle C. Endly¹, Roger H. Weenig², Margot S. Peters^{3,4}, David S. Viswanatha⁴ and Nneka I. Comfere^{3,4}

J Cutan Pathol 2008: 35: 1063–1067 doi: 10.1111/j.1600-0560.2007.00931.x Blackwell Munksgaard, Printed in Singapore Copyright © Blackwell Munksgaard 2008 Journal of Cutaneous Pathology

Transformation of cutaneous gamma/ delta T-cell lymphoma following 15 years of indolent behavior

Subcutaneous gamma/delta (γ/δ) T-cell lymphoma is a rare lymphoma, characterized by its unique immunophenotype and clinical course. It has been shown to behave more aggressively than its

Gregory A. Hosler^{1,2,3}, Nanette Liégeois¹, Grant J. Anhalt¹ and J. Margaret Moresi¹


Primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphoma (PCAECTL)

- Adults more often in males
- Generalized papules, ulcerating nodules, tumors and plaques with erosion and central necrosis.
- Dissemination to visceral sites (lumg, testes, CNS)
- Lymphnodes are usually spared
- Pagetoid epithelial involvement of atypical CD8+
 T-cells with cytotoxic proteins

Aggressive epidermotropic CD8+ CTCL

Berti E. et al; Am J Pathol 1999;155: 483-492

Prognosis and Treatment

Prognosis: median survival of 12 months

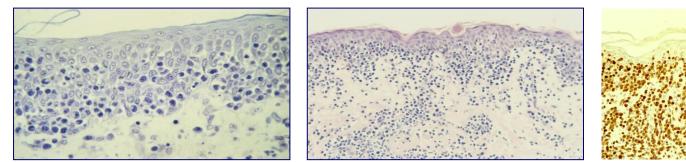
Incidental succes with polychemotherapy and aSCT

New developments:

- Brentuximab
- Pralatrexate

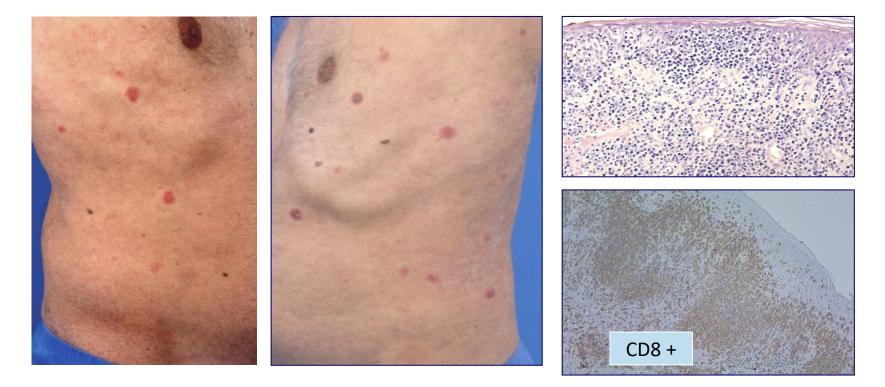
CrossMark

Original Study


Transplantation in the Treatment of Primary Cutaneous Aggressive Epidermotropic Cytotoxic CD8-Positive T-Cell Lymphoma

Benoit M. Cyrenne,¹ Juliet Fraser Gibson,¹ Antonio Subtil,² Michael Girardi,¹ Iris Isufi,³ Stuart Seropian,³ Francine Foss³

Case October 1994, solitary plaque


- Male, 59 years
- Since 6 months red plaques on the trunk.
- Histology: epidermotropic CD8+ CTCL: atypical MF; DD: AETCL, PTCL, NOS
- No lymphadenopathy.
- Therapy: topical nitrogen mustard

WCL 883

Case 14: December 1994, multiple plaques

WCL 883

Case 14, development of ulceronecrotic lesions

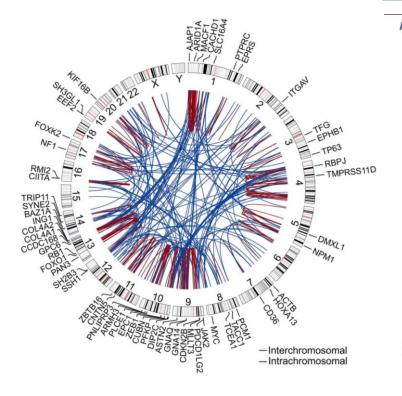
April 1995

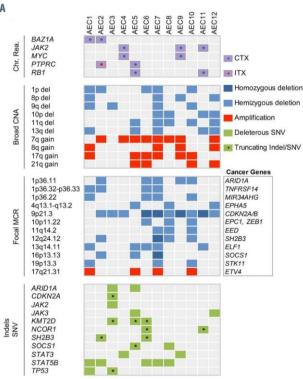
February 1996

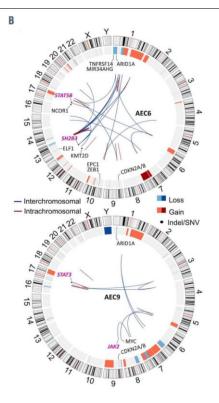
Case Treatment and Follow up

10-1994	Diagnosis epidermotropic CD8+ CTCL (atypical MF, IB) Clinical examination: plaques; Therapy: HN2
12-1994	Development of nodular lesions \rightarrow ulceronecrotic.
04-1995	Widespread ulcerating nodules and tumors. Staging: no extracutaneous disease Therapy: CHOP → complete remission (09-1995)!
03-1996	Progressive skin disease. Therapy: TSEB followed by HN2
12-1996	Progressive skin disease. Therapy: Etoposide, PECC, etc.
01-1997	Died of lymphoma (27 months after diagnosis)

Case 14

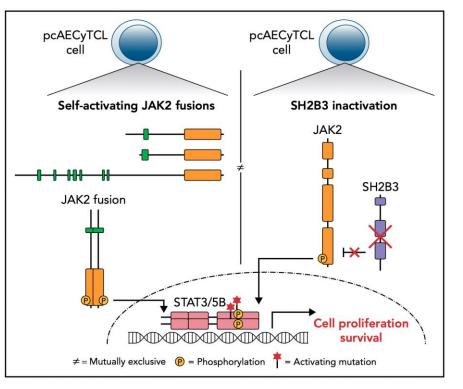



Molecular alterations and Therapeutic targets


ARTICLE	Non-Hodgkin Lymphoma	
Ferrata Storti Foundation	Deregulation of JAK2 signaling underlies primary cutaneous CD8 ⁺ aggressive epidermotropic cytotoxic T-cell lymphoma	
	Armando N. Bastidas Torres, ¹ Davy Cats, ² Jacoba J. Out-Luiting, ¹ Daniele Fanoni, ³ Hailiang Mei, ² Luigia Venegoni, ³ Rein Willemze, ¹ Maarten H. Vermeer, ¹ Emilio Berti ⁴ and Cornelis P. Tensen ¹	
Haematologica 2022 Volume 107(3):702-714	¹ Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands; ² Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands; ³ Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy and ⁴ Department of Dermatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy	

Whole genome Sequencing (n=12) and RNA seq (n=6)

Translocations, cna and mutations



JAK2 overactivation in AECTCL

- Overactivation of JAK2 in virtually all cases (not detected in other cytotoxic CTCLs).
- Self-activating JAK2 fusion
- Gain of function mutations:
 - JAK2, STAT3, STAT5B
- Loss of negative regulators:
 - SH2B3
- Deletion 9p21.3 (CDKN2A) in 10/12 cases (83%)

Fanoni D, et al. Genes Chromosomes Cancer. 2018;57:622-629; Bastidas Torres AN, et al. Haematologica. 2021; Lee K, et al. Blood 2021

Rare and aggressive T-cel lymphoma

Often have a dismal prognosis New and promising drugs but optimal use to be established

Progress in molecular characterization, has given insight in biology but has not changed therapeutic approach, yet

Future: Skin as Window in Tumor Micro Environment

Combined therapeutic approach Translational research

- Cytotoxic drugs
 - Classic cytotoxic drugs
 - Cell surface directed
- Inhibition of cell signaling
- Immune checkpoint
- Cellular therapies

- Bioavailability of drugs (MALDI-TOF)
- Tumor infiltrate (CyTOF)
- Spatial transcriptomics
- Single cell NGS

Monitor changes in Tumor cells and Tumor Immune Response

EORTC Cutaneous Lymphoma Leiden The Netherlands 21-23 September

LEIDEN The Netherlands

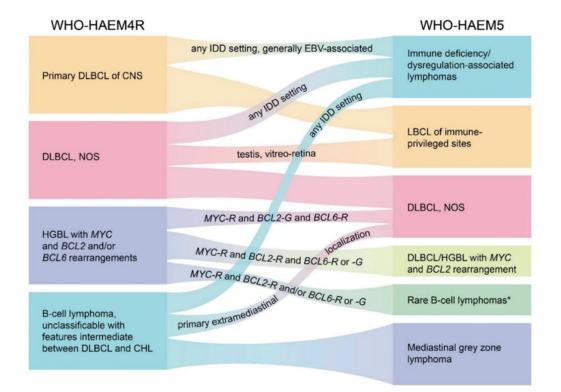
HISTORIC CENTER

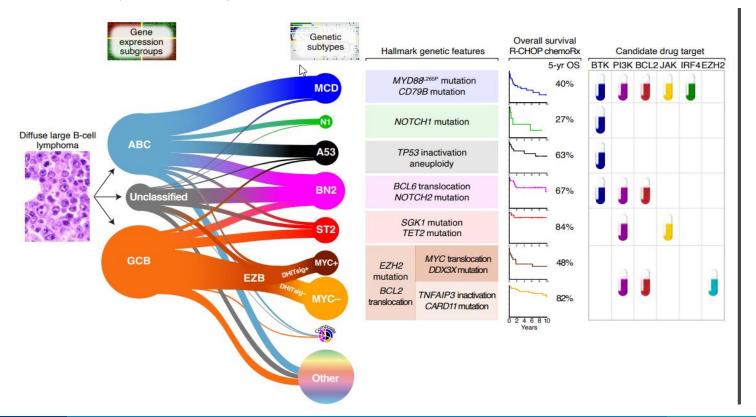
- 28 kilometers of canals
- More than 3000 registered monuments
- 35 almshouse courtyards
- 88 bridges connecting the streets

CULTURAL HERITAGE

- 13 Museums in walking distance
- Birthplace of the Dutch painter Rembrandt
- European city of Science 2022

BIOSCIENCE PARK


- Largest Life Science & Health cluster in the Netherlands with 150 LSH companies
- 6 Education institutions



Incorporation of genetic alterations in classification

Future developments....

Incorporation of genetic alterations in classification and treatment

Cell of origin (V δ 1 or V δ 2) correlates with clinical presentation and histology and prognosis is unclear.

Cell of Origin	Vδ1	νδ2	
Clinic	Plaques	Nodules	
Histology	Epidermal	Dermal	
Survival (median)	30	12	

New Developments

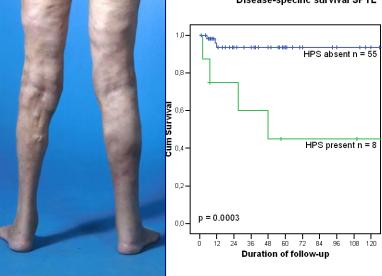
- 1. Subcutaneous Panniculitis T-Cell Lymphoma
- Germline mutation predisposes for SPTL
- Biological insight in relation with lupus
- 2. Primary Cutaneous Gamma-Delta T-cell lymphoma
- Cell of origin corelates with clinical presentation

Subcutaneous Panniculitis-like T-cell Lymphoma (SPTL)

- Rare type of CTCL (<1% of CTCL)
- Young (median age 36 years), female > male
- Subcutaneous nodules and tumors resulting in lipodystrophy.
- Systemic B-symptoms (fever, malaise)
- CD8+, cytotoxic T-cells infiltrating subcutaneous adipose tissue with rimming of individual fat cells.

• By definition TCRάβ

Subcutaneous panniculitis-like T-cell lymphoma (WHO-EORTC: only alpha/beta positive cases!)

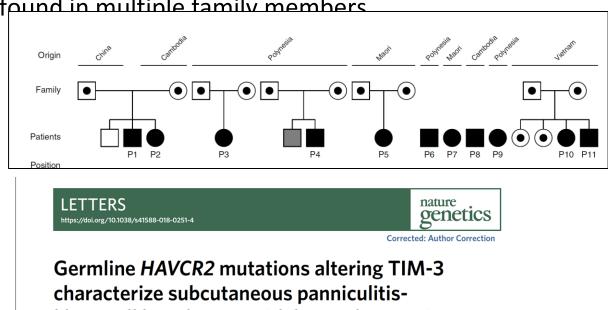

Staging: complete

First choice of treatment:

- prednison, methotrexate
- ciclosporin
- radiotherapy

If not responsive:

• systemic chemotherapy



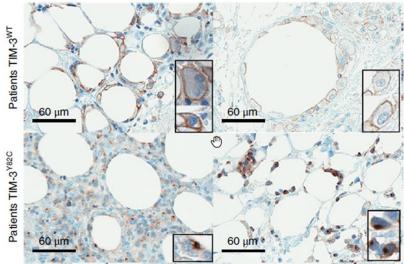
Disease-specific survival SPTL

Prognosis

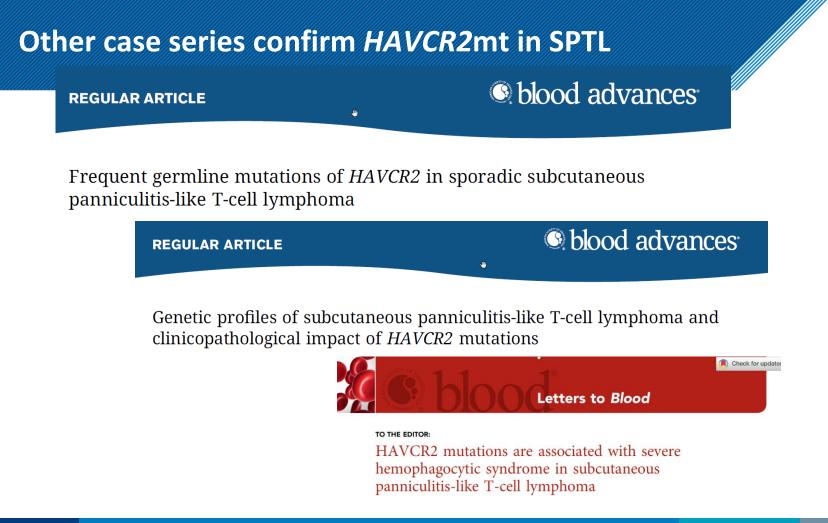
- Five-year survival >80%
- Around 20% hemophagocytic

SPTL: clinical observations

SPTL found in multiple family members


like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome

HAVCR2 mt is associated with SPTL


- HAVCR2 encodes TIM3 a checkpoint molecule regulating immune response
- HAVCR2mt → impaired folding, decreased expression and loss of function of TIM3 protein → loss of immune checkpoint → ongoing cytokine production and inflammation

Mutations include:

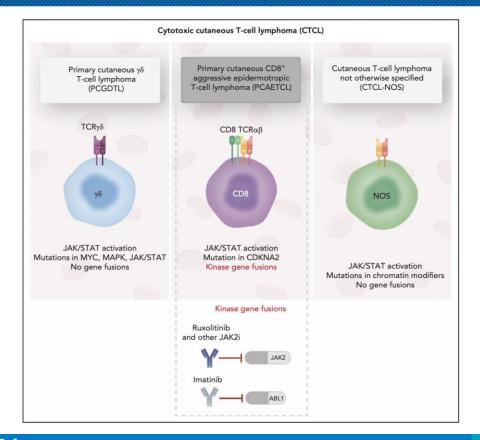
- Y82C Asian, polynesia
- I97M Europe
- T101I Asian

Gayden Nature Gen 2018

SPTL Case series

	Sonigo (France)		Koh (Korea)		Polprasert (Thailand and Japan)	
SPTL	SPTL mt	SPTL wt	SPTL mt	SPTL wt	SPTL mt	SPTL wt
N =	5 I97M 8 Y82C	40	25 y82C	24	11 Y82C	2
Age (med.)	34	44	26	40	32	30
F:M	10:3	31:9	16:9	18:6	7:4	2F
Severe HLS	3/13	0/40	13/24	1/23	3/11	1/2
RFS (mo)	na	na	57	11	na	na

Sonigo Blood 2019, Blood Adv, Koh Blood Adv 2021



SPTL are associated with germline HAVCR2 mutations

Patients from different geographical regions have different HAVCR2 mutations But all HAVCR2 mutations lead to loss of TIM3 expression

SPTL patients with HAVCR2 mutations:

- Are younger
- More often complicated by HLS
- Shorter RFS

